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Electronic polarizability effects on the anharmonic phonon 
shift and damping in ionic crystals 

A Greco, S Koval and R Mgoni 
apaMmenLo de Ffsica, Facultad de Ciencias Exaclas, Ingenieria y Agrimensura. (UNR) 
InsliluLo de Fisie b r i o  (CONICET - UNR), Boulmrd 27 de Febrem 210 Bir, 2ooo 
Rcsaio, Argentina 

Rsei~ed 9 January 1952 

AbstrpeL We apply a previously developed perturbative Cormalism for anharmonic shell 
models Lo the Qlcuhlion of phonon shifts and widths in a imple onedimensional model 
of a solid with polarizable ions. We analyse these pmperties [or different kpoints in the 
BriUouin zone and also as a function of lemperature for Gxed k. We mmpare our resulls 
for s"l values of the mre-shell mupling " a n t  g with thme obtained by using 
a rigid-ion model - m). We show that Ihe elenronic polarizabilily of ions leads 
Lo signillen1 mcdil3elions of the Ldependences as weU as of Ihe ratio between the 
damping and shift. We give an interpretation of existing discrepancies between lheoly 
and =penmen1 for anharmonic phonons in silicon. Finally, we mention some funher 
applications. 

1. Introduction 

The shell model has been used with considerable success for the lattice dynamics of 
ionic crystals [l]. The outer electrons of the ions are represented in this model by 
spherically symmetric massless charge shells. In this way the polarizability effects are 
incorporated, and much better agreement than that predicted by the rigid-ion model 
can be achieved for the phonon dispersion curves as well as other obsewable material 
properties [2]. 

In the harmonic approximation the usual meatment is to solve for the shell coor- 
dinate from its equation of motion (adiabatic condition), and then to substitute it in, 
in order to obtain an effective potential for the motion of the cores (nuclei) [l]. 

The most important feature of the shell model is that the interactions involved 
have a direct physical interpretation. The effective couplings between cores, arising 
when the shell coordinates are eliminated, are generally complicated and difficult to 
find in the framework of a rigid-ion model. 

However, in an anharmonic situation the shell coordinate cannot be obtained 
exactly from the adiabatic condition. This constraint generates implicitly anharmonic 
long-range effective interactions. Thus the formulation of the dynamics and statistical 
mechanics of the shell model with a general interaction potential requires careful 
treatment. A first approach in this direction was a perturhative formulation using a 
self-consistent phonon approximation as a generalization of the harmonic model [3]. 
More recently, a path-integral representation of the quantum partition function for 
a general adiabatic shell model was defined 141. This was the starting pint  for a 

0953-8984/921w5291+10$04.50 0 1992 1OP Publishing Ud 5291 



5292 A Greco et 01 

subsequent systematic development of a perturbation theory for the anharmonic shell 
model [SI. 

In this paper we show how this perturbative method applies to the calculation of 
the phonon shifts and dampings in a onedimensional anharmonic shell model as a 
simple example of a system of an anharmonic crystal with polarizable ions. Our aim 
is also to compare the results with those obtainable from the model in the rigid-ion 
limit Signiticant discrepancies will become apparent, thus showing the relevance of 
our formalism. 

The paper is organized as follows. In section 2 the model is presented and the 
perturbative method of [5] is applied to it. In section 3 the numerical results and 
conclusions are given. Finally, in section 4 we present the discussion. 

2. The model and perturbative method 

With the aim of computing the phonon frequency corrections and lifetimes due to 
anharmonicities, we study the model defined by the following poteatial: 

In equation (2.1), U, and wi are the core and shell displacements, respectively, at the 
site i. The quantities f and g are harmonic force constants, while f3 and f., are 
cubic and quartic anharmonic constants, respectively (figure 1). 

s 
Figure 1. Monatomic chain of linearly polarizable ions with mreshe l l  coupling mnstant 
g and harmonic, cubic and quartic shell-shell inleractions f ,  f3. fr klween neaffist 
neighbours. M is the ionic mass and U, and U, arc the mre and shell displacements, 
rcrpectively, of the ilh ion. 

This model presents the main characteristics of an anharmonic shell model. For 
this reason most results obtained with this simple model will be qualitatively valid 
for general anharmonic shell models. Moreover, the model presents a well defined 
limit to the rigid-ion model. In the limit g - CO, where the ionic polarizability is 
neglected, we get a rigid-ion model with nearest-neighbour cubic and quartic interac- 
tions. Therefore, the phonon lieshifts and liewidths computed with the pcrturbation 
theory of [SI become the rigid-ion model values [6]. 

The potential can be witten in a more compact form: 
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x =  
U 

U (2.5) 
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The diagrams with two external legs containing up to (WO vertices of type F3 and 
diagrams with one vertex of type F4 are 

+= t =+A++ 
(29) 

+U+ P+Tt ... 

Diagrams with hvo vertices F3 and diagrams with one vertex F4 are in the same 
order of perturbation theory [7]. Using the diagrammatic rules [5] and reinserting 
italic indices, we obtain 

+ = g ; j  - ?. . x(4) f 1 , x(3) x(3) 
+ ~ g ; q X l ~ ~ ~ ~ g p t g h 3 X ( f , ~ ) g l j  (3)  f %giqZ(pklm)gklgmj 

2% (qkfm)gklgmj  zg:9 (qlp)gl:gph (fh8)gaj  

(2 10) 

where 

(2110) 

(2.114 

The parentheses mean that the expression has been symmetrized in all the enclosed 
indices. 

Using the exprkssions in appendix 1 for the matrices, equations (210) in the 
reciprocal space lead us to the following free-phonon frequency correction A (to the 
harmonic dispersion curve wo(q) )  and inverse of the phonon lifetime r: 

A ( k , w )  = A(')(k,w) + A(2)(k,w) f ANEW(k,w) (2.12) 

where 

(2.1%) 

x [sin(k + q)a  -sin(ka) - ~ i n ( q a ) ] ~ ( 2 n ,  + 1) (2.1%) 
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and 

x f m k ,  91, nz) D(w,  4 9 4,. (214) 

AU the expressions belonging to (213) and (2.14) can be found in appendix 2 
The contribution to A from the diagram: 

is zero because of the inversion symmetry [6]. 
The term ANEW, in equation (21.73, is due only to our formalism. When per- 

forming the perturbation theory up to second order in fa, a quartic vertex appears 
with two F3 and one S-I (see the last term in (2.10)). 

It is easy to see that, when g -+ CO, A@) and A(') tend to the corrections of 
the dispersion curves corresponding to the rigid-ion model with cubic and quartic 
nearest-neighbour interactions given by force mnstants fa and f.,, respectively. On 
the other band, ANEW vanishes in this limit. 

3. Results and conclusions 

Using the results of section 2, we computed numerically the frequency shift A( IC, w) 
(equation (212)) and damping constant r(IC,w) (equation (2.14)). For this purpose, 
the sum over q was evaluated by using 100 points of the Brillouin zone. The contri- 
bution of the Umklapp processes had to be taken into account in this procedure. We 
have chosen the Gaussian representation of the 6-function: 

6(w) = lim [ ( l / ~ f i ) e e x p ( - w ~ / e ~ ) ]  
C-0 

while for the principal part of A we have taken the following expression: 

( I / z ) ~  = Iim[z/(x2 C-0 + E')] (3.2) 

with values of E small but finite. The numerical values of A and r which result are 
almost independent of E over a range of values. We select the value of e in the centre 
of such range. In this way, we obtain er = 0.6872 THz for the &representation and 

= 0.000 098 2 THz for the principal-part representation. 

Table 1. Parameres of the model 

M f  f3 f4 
(amu) (ev A-2) (ev A-3) (ev A-') 
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lhbk 2 Different mntributions to the lineshift A for g = 3 f (upper valuer) and for 
the rigid-ion Limit g -+ m (lower nlues) at T = 500 K. A‘,” and A!’ are the normal 
and Umklapp mnlributions to A(z). AT ir lhe Lola1 LineshifL W give the values of A 
at difierent k-points cl lhe Brillouin wne. 

0.20 0 . m  -a0954 - a m  -a0233 -ai117 
0.0171 -026s -a0093 - a m  -ams 

0.40 0 . 0 ~ 4  -0.0835 - a m  -om% -aim 
0 . 0 3 ~  -0.4799 -amn - a m  - a m  

0.64 oms - 0 . 0 s ~  -aws - a m  -aws 
0.0447 -0.627~ -a0845 - a m  - 0 . ~ 7 0  

aom -0.6807 -ais60 - a m  -a7841 
1 .w 0.0073 -0.0154 -a0154 -a0327 -a0561 

0 . 0 ~ ~ 2  -a2908 -a2w - 0 . m  -as264 

0.80 0.0076 -a0350 -&W81 -(1(331 -00686 

For the numerical evaluation of our expressions we choose the model parameter 
values shown in table 1, which give frequencies in the terahertz range and phonon 
shifts and widths within a few per cent of the bare phonon frequencies. 

We perform the calculations for several values of the core-shell coupling g. This 
is the relevant parameter of the shell model and, as explained in the previous section, 
the limit g -, 03 will aUow us to consider the rigid-ion behaviour. 

In table 2, we compare the different contributions to the lineshift A for g = 3 f 
with those for g -t m at T = 500 IC The same comparison is made for the linewidth 
2r in table 3. With the chosen ratio g/ f = 3 which is quite reasonable in shell model 
calculations, we. obsewe in tables 2 and 3 that the values of A and r are substantially 
smaller than those for g -+ 03. This is the Iirst indication that the anharmonic 
parameters determined in the framework of a rigid-ion perturbation theory cannot 
be employed in a shell model where the short-range interactions are supposed to act 
between shells of neighbouring ions. 

We compute the tatio AsM/Am of the total lineshift of the shell model (with 
finite g) to the total lineshift of the rigid-ion model (g 00) at T = 500 K 
In figure 2 we show AsM/Am as a function of the wavevector k throughout the 
Brillouin zone and for different values of g. 

An analogous analysis of the linewidth ratio 2rSM/2rR, is made in figure 3. 
Both ratios are strongly kdependent even for the reasonable value g = 3f. 

The shell model quantities lie below the rigid-ion values and the differences increase 
towards the Brillouin zone boundary. This behaviour iF understandable by considering 
that the shell displacement amplitude grows for modes with increasing k. Thus the 
attenuation of the inter-ionic spring stretching due to shell-core displacements is 
more marked near the zone boundary. The less the springs are stretched, the smaller 
are the anharmonic effects. A value g = l O f  produces a zone boundary frequency 
only 8.7% below that of the rigid-ion model, while the shell model lineshift and 
linewidth are still about 60% smaller than rigid-ion values, as seen in figures 2 and 
3 at /c = n/a. The differences between the shell model and rigid-ion model resuls 
become negligible only for very high values of g, about two orders of magnitude 
higher than the inter-ionic force constant f .  

Let us now consider the temperature dependences at the zone boundary and 
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Figure 2 lhe ratio AsM/A.nr d the toial heshift  
d the shell model to the m n q o n d i n g  lineshift 
d the rigid-ion limit -us WaMVectQr k along 
the Brillouin wne We plot the ratio [or different 
values of g at T =  500 K 

ngvm 3. The ratio 2 r ~ ~ / 2 r ~ t  of the linewidth 
of the shell model to lhe corresponding linewidth 
of the rigid-ion limit versus wavevector k along 
lhe Brillouin wne. We plot the ratio for different 
values of g at T = 500 K 

lhbk 3. Different mntributions lo the linewidth 2I' for g = 3 f (upper values) and for 
the rigid-ion limit p - m p v e r  values) at T = 500 K 2 r ~  and 2ru are the normal 
and Umklapp mnhibutions to 2r. 2PT b the tola1 tinewidth. We give the values of 
2r a t  different k-poinu of the Brillouin m e .  

k zrN 2ru 2rT 
( u f i u o f n l o )  P) P) P) 

0.60 
0.6612 0 . W  0.6512 
0.1128 0 . m  a i m  
1.1932 0 . m  1.1932 

0.80 0.0756 O.ooO1 0.U7.57 
1.2714 0.0018 1.2732 

1.00 0.0354 0.0354 0.0709 
0.6418 0.6418 1.2836 

compare again the rigid-ion behaviour with the shell model behaviour. We observe in 
equations (212)-(214) that the value of g does not affect the behaviour of A and r as 
functions of temperature. Therefore the ratios [A(T) - A(0)lSM/[A(T) - A(0)lRI 
and rSM(T)/rR,(T) ,  shown in table 4 for different values of g, are independent 
of T. 

Note that the r-ratios are significantly smaller than the A-ratios. This implies 
that the ratio of the hewidth to the lineshift of the mne boundary phonon is smaller 
for the sheU model than for the rigid-ion model. The same applies to most k- 
values. Therefore, in general, if the anharmonic force Constants are adjusted to fit 
phonon shifts, the linewidths are expected to have smaller values when the anhar- 
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lbbk 4 Values of the Tindependent ratios [A(T)-A(O)]SM/[A(T) -A(O)]RI and 
rSM(T)/rRI(T) at the zone boundary for several values of the core-shell coupling 
constant g. 

f 0.0213 

l O f  0.3796 
50 f 0.7934 
-+cm 1.oooo 

3 f 0.1071 
0.0046 
0.0552 
0.3101 
0.7632 
1.oooO 

monic interactions connect polarizable ions than in the case when they are considered 
between effectively rigid ions. The former case is properly treated in our formalism. 

4. Discussion 

The harmonic shell model has been used since 1960 to describe accurately the phonon 
dispersion curves of many compounds at  a fixed temperature. In the cases where the 
anharmonic effects have also been studied, however, a perturbation theory based on 
a development of the crystal potential in higher orders of the nuclear displacements 
has been employed. The bare phonon frequencies calculated with the shell model 
are used in the expressions in [6] for the lineshifts and linewidths corresponding to 
such anharmonic theory. Therefore, although the long-range interactions generated 
by the polarization of the electronic shells through the adiabatic condition are taken 
into account in the harmonic approximation, they are neglected when incorporating 
anharmonicities. These are taken for effectively rigid ions. 

In the present work we have shown that a consistent perturbative treatment of the 
anharmonic interactions in a shell model [5] leads to substantial qualitative and quan- 
titative differences from the former treatment. Firstly, the anharmonic parameters 
necessary U> explain a given phonon shift and width are larger for the shell model 
than for the ngid-ion model. Secondly, the shell model gives a different (generally 
smaller) ratio of linewidth to lineshift, Thirdly, both features are kdependent. 

The second fact mentioned above enables us to give a possible interpretation of 
the discrepancies found by Cowley [SI in the treatment of the anharmonicities in 
silicon. Cowley described the harmonic dispersion curves for silicon using a shell 
model. Then he followed the procedure described at the beginning of this section 
to calculate the lineshift and linewidth of the optical phonon at the Brillouin zone 
centre. He reproduced satisfactorily the phonon lineshift but predicted values much 
larger than the experimental data for the phonon linewidth. The origin of these 
discrepancies has recently been the subject of speculation [9]. Our results show that 
they may be ascribed to the neglect of the polarizability effects in the treatment of 
anharmonicities. We shall pursue a detailed analysis of this problem in future work. 

We are also interested in the tetragonal-to-orthorhombic phase transition that 
takes place in La,CuO,. By starting from a shell model fit of the phonon dispersion 
curves [lo], we shall analyse the soft mode responsible for the structural transition by 
using the shell model perturbation theory [5] as described in this work. Moreover, we 
shall try to compare the evaluation with that recently carried out in the framework 
of a rigid-ion model [ll]. It is also interesting to study, with a shell model for 



Polnrizabilig efects on anhamtonic phonons 5299 

La,CuO,, the role played by a non-linear oxygen polarizability in the structural 
transition mentioned above. This anharmonic behaviour of the oxygen polarizability 
was used to explain the phase transition in recent work (121. 
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Appendix 1 

The non-vanishing matrix elemenls in (22) are 

& = g  % i = j  
'1 

(Al. 1) 

(A1.3) 

if i = j = k = I + 1, and index permutations 

{ !4: if i = j = k = 1 - 1, and index permutations 

@ k l =  if i = j ,  k = 1 = i - 1, and index permutations W.4) 

if j = k = 1 + 1, and index permutations 
F$k = { isf3 if i = j + 1 = k + 1, and index permutations. (-+wl 



Other important definitions are 

Y ( 4 )  = Uf + 9 )  - Z f  cos(na)l-' 

wo(q)  = { 1 ~ f s i n ~ ( s a / 2 ) 1 / [ 1 +  ~ / g )  S i n 2 ( r l a / ~ ) ~ ~ - " 2  

np = {exp [piiu0(q)] - I}-'. 

('42.5) 

F . 6 )  

w . 7 )  

In (A23) the suaX P denotes principal part, while in (2.13) and (214) the A- 

The notation W: means wo(qi) ,  while ni means npi. 
function reflects wvevector conservation, modulo a reciprocal lattice vector. 
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