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Absiract. We apply a previously developed perterbative formalism for anharmonic shell
models to the calculation of phonon shifts and widths in a simple one-dimensionai model
of a solid with polarizable fons. 'We analyse these properties for different k-points in the
Brillonin zone and also as a function of temperature for fixed k. We compare our resuits
for several values of the core-shell coupling constant g with those obtained by using
a rgid-ion model (g — oo). We show that the electronic polarizability of ions leads
to signiicant modifications of the k-dependences as well as of the matio between the
damping and shift. We give an interpretation of existing discrepancies between theory
and experiment for anharmonic phonons in silicon. Finally, we mention some further
applications.

1. Introduction

The shell model has been used with considerable success for the lattice dynamics of
ionic crystals [1). The outer electrons of the ions are represented in this model by
spherically symmetric massless charge shells. In this way the polarizability effects are
incorporated, and much better agreement than that predicted by the rigid-ion mode{
can be achieved for the phonon dispersion curves as well as other observable material
properties {2]. '

In the harmonic approximation the usua) treatment is to solve for the shell coor-
dinate from its equation of motion (adiabatic condition), and then to substitute it in,
in order to obtain an effective potential for the motion of the cores (nuclei) [1].

The most important feature of the shell model is that the interactions involved
have a direct physical interpretation. The effective couplings between cores, arising
when the shell coordinates are eliminated, are generally complicated and difficult to
find in the framework of a rigid-ion model,

However, in an anharmonic situation the shell coordinate cannot be obtained
exactly from the adiabatic condition. This constraint generates implicitly anharmonic
long-range effective interactions. Thus the formulation of the dynamics and statistical
mechanics of the shell model with a general interaction potential requires careful
treatment. A first approach in this direction was a perturbative formulation using a
self-consistent phonon approximation as a generalization of the harmonic model [3].
More recently, a path-integral representation of the quantum partition function for
a general adiabatic shell model was defined [4]. This was the starting point for a
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subsequent systematic development of a perturbation theory for the anharmonic shell
model [5].

In this paper we show how this perturbative method applies to the calculation of
the phonon shifts and dampings in a one<limensional anharmonic shell model as a
simple example of a system of an anharmonic crystal with polarizable jons. Our aim
is also to compare the results with those obtainable from the model in the rigid-ion
limit. Significant discrepancies will become apparent, thus showing the relevance of
our formalism.

The paper is organized as follows. In section 2 the model] is presented and the
perturbative method of [5] is applied to it. Ir section 3 the numerical results and
conclusions are given. Finally, in section 4 we present the discussion.

2. The model and perturbative method

With the aim of computing the phonon frequency corrections and lifetimes due to
anharmonicities, we study the model defined by the following potential:

O(u,v) = Z (%f(”i — v+ do(u —v)P + %(”; —v;q)°

+ %(Ui - Ue—x)d) 2.1)

In equation (2.1), u,; and v, are the core and shell displacements, respectively, at the
site . The quantities f and g are harmonic force constants, while f, and f, are
cubic and quartic anharmonic constants, respectively (figure 1).

Figure 1. Monatomic chain of linearly polarizable ions with core-shell coupling constant
g and harmonic, cubic and quartic shell-shell interactions f, fi, fi between nearest
neighbours. A is the ionic mass and », and v, are the core and shell displacements,
respectively, of the ith jon.

This model presents the main characteristics of an anharmonic shell model. For
this reason most results obtained with this simple model will be qualitatively vaiid
for general anharmonic shell models. Moreover, the model presents a well defined
limit to the rigid-ion model. In the limit g — oo, where the ionic polarizability is
neglected, we get a rigid-ion model with nearest-neighbour cubic and quartic interac-
tions. Therefore, the phonon lineshifts and linewidths computed with the perturbation
theory of [5] become the rigid-ion model values [6].

The potential can be written in a more compact form:

O(u,v) = LR u'w + TP u'v, + %S"jvivj -+ (1/4!)F:jkfv,-vjvkv,
o (1/3!)F;jkvivjvk 2.2)



Polarizability effects on anharmonic phonons 5293

where the matrix elements can be found in appendix 1.
From here on, we shall use the notation and resuits of [5]. Using

0D /8v = Tu + Sv 4+ (1/3") Fyvvv + (1/21) Fyov 2.3)
8% fov8v = S+ (1/2Y)Fyov + Fpv (2.4)
and the vector
u
X=|v @.5)
X

the effective action S' takes the form
S = 1X*GILXP + 0" Sn+ (1/4)AL) ;X XP X7 X% +(1/31) AS), X XP X
+ BRI X*n"n + (1/2) BE) X XPn"n | 2.6)
where, in order to use the simplified diagrammatic rules [3], all the italic indices are
suppressed. The only non-vanishing matrix elements in (2.6) are

Ay = AlGhy = Al = Al = Al = F, 27)
A=A = ARG =A== F, @.7)
BY = F, (2.7%)
B® = F, @)

Besides the terms with the propagators G, and S~! (see [5)) in the effective action
(2.6), we have four terms with different types of vertices:

(~D(1/4DAG, :

afys ° (2&1)

(-1)(1/31) A%, :

ﬂ><1
B B
> T
p
(-1)(1/2) B} - >q’f: (2.8¢)
B

(2.8b)

(-1)BY: (2.:84)
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The diagrams with two external legs containing up to two vertices of type F; and
diagrams with one vertex of type F} are

+

—-@—: +

o ¢« —(O—
F—$p—+ CP

&
& @9)

IR

Diagrams with two vertices F, and diagrams with one vertex F, are in the same
order of perturbation theory [7]. Using the diagrammatic rules [S] and reinserting
italic indices, we obtain

—D— =%~ 39 XGhim)IkiIm; + $9i0 K (yip)915ph X (1he) 9o
+ 10i0 X i 9t Ins X iasy 913 + 390 Ziqktm)9i9mj (2.10)
where
X FI797 S 85185 ST TR T T, (2.11a)
X = 3PS5l S S Ty @.11b)
Zppsa = FA ST FPR ST SIS STATITETITY @.11c)

The parentheses mean that the expression has been symmetrized in all the enclosed
indices. .

Using the expressions in appendix 1 for the matrices, equations (2.10) in the
reciprocal space lead us to the following free-phonon frequency correction A (to the
harmonic dispersion curve w®(q)) and inverse of the phonon lifetime I':

Alk,w) = AD(k,w) + AD(k,w) + AVNEV (k, W) (2.12)
where
AD(k) = 2y T 93 I HO Gk a)(2n, + 1) (.132)

(k. w) = — L RE_ e7%(k) v~ Y21)77(g0)
AP (k, )= 16 Nﬁ3gswg(k) P w“(qi)wo(t}z)

xA(K —q, - QQ)H(Z)(R': Q1,Q2)P(W’w1°,‘-‘-’o) (2.13b)

A k k+ g)v?
ATk w) = ~ i g ZOEkg 427( wuﬁ‘; e

x [sin(k + ¢)a — sin(ka) — 51n(qa)]2(2'n.q +1) (2.13¢)
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and

whii 7 (k) o Y)Y ()

P(k’w) = 16NM39 wu(k) q192 wa(QI)wo(Q2)

Ak — g — 42)

X H(z)(k,ql,qz)l)(w,w?,wg). (219

All the expressions belonging to (2.13) and (2.14) can be found in appendix 2.
The contribution to A from the diagram:

D

is zero because of the inversion symmetry [6].

The term ANEW_ in equation (2.12), is due only to our formalism. When per-
forming the perturbation theory up to second order in f;, a quartic vertex appears
with two F; and one S~! (see the last term in (2.10)).

It is easy to see that, when g — oo, A(® and A(Y) tend to the corrections of
the dispersion curves cotresponding to the rigid-ion model with cubic and quartic
nearest-neighbour interactions given by force constants f, and f,, respectively. On
the other hand, ANEW vanishes in this limit.

3. Results and conclusions

Using the results of section 2, we computed numerically the frequency shift A(k,w)
(equation {2.12)) and damping constant I'(k,w) (equation (2.14)). For this purpose,
the sum over ¢ was evalvated by using 100 points of the Brillonin zone. The contri-
bution of the Umklapp processes had to be taken into account in this procedure. We
have chosen the Gaussian representation of the §-function:

§{w) = lein}) [(1/ey/7) exp(—w2/€2)] (3.1)
while for the principal part of A we have taken the following expression:
(1/2), = lim[z/(2* + €] 62

with values of ¢ small but finite. The numerical values of A and I’ which result are
almost independent of ¢ over a range of values. We select the value of e in the centre
of such range. In this way, we obtain ¢ = 0.6872 THz for the §-representation and
€, = 0.000098 2 THz for the principal-part representation.

Table 1. Parameters of the mode|

M f bid fa
(@mu) (eV A-?) @V A~Y) (eV AY

1205 015625 -0.07225 0.00625
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Table 2. Different contributions to the {ineshift A for ¢ = 3 f (upper values) and for
the rigid-ion limit g — oo (lower values) at T = 500 K. A{? and A are the normal
and Umklapp contributions to A{?), AT is the total lineshift. We give the values of A
at different k-points of the Brillouin zone.

k Al A&?) Ag) ANEW AT
(uis of 7/a) (THg) (THz) (THe) (TH) (Thz)
0.20 0.0077 —00954 —-0.0008 —-0.0233 -01117
00171 —0.2623 —-0.0093 —-0.0000 -0.2545
0.40 0.0094 ~0.0835 -0.0023 —-0.0328 -0.1092
0.0325 —04799 —0.0372 -00000 -04846
0.60 0.0085 —0.0536 —-00045 -0.0340 --0.0835
0.0447 --0.6272 --0.0845 —0.0000 -—0.6570
0.80 0.0076 —0.0350 -—-0.0081 ~0.0331 —0.0686
0.0525 —0.6807 —0.1560 ~0.0000 —0.7841
1.00 00073 —0.0154 —-0.0154 -0.0327 -0.0561

0.0552 -0.2908 —0.2908 -0.0000 -0.5254

For the numerical evaluation of our expressions we choose the model parameter
values shown in table 1, which give frequencies in the terahertz range and phonon
shifts and widths within a few per cent of the bare phonon frequencies.

We perform the calculations for several values of the core-shell coupling g. This
is the relevant parameter of the shell model and, as explained in the previous section,
the limit g — co will allow us to consider the rigid-ion behaviour.

In table 2, we compare the different contributions to the lineshift A for g = 3 f
with those for g — co at 7' = 500 K. The same comparison is made for the linewidth
2T in table 3. With the chosen ratio g/ f = 3 which is quite reasonable in shell model
calculations, we observe in tables 2 and 3 that the values of A and I are substantially
smaller than those for g — co. This is the first indication that the anharmonic
parameters determined in the framework of a rigid-ion perturbation theory cannot
be employed in a sheil model where the short-range interactions are supposed to act
between shells of neighbouring jons. -

We compute the ratio Agy, /AR, of the total lineshift of the shell model (with
finite g) to the total lineshift of the rigid-ion model (g — oc) at T = 500 K
In figure 2 we show Agy/Ap, as a function of the wavevector & throughout the
Brillouin zone and for different values of g.

An analogous analysis of the linewidth ratio 2I'g, /2Ty, is made in figure 3.

Both ratios are strongly k-dependent even for the reasonable value g = 3f.
The shell model quantities lie below the rigid-ion values and the differences increase
towards the Brillouin zone boundary. This behaviour is understandable by considering
that the shell displacement amplitude grows for modes with increasing k. Thus the
attenuatjon of the inter-ionic spring stretching due to shell-core displacements is
more marked near the zone boundary. The less the springs are stretched, the smaller
are the anharmonic effects. A value g == 10 f produces a zone boundary frequency
only 8.7% below that of the rigid-ion model, while the shell model lineshift and
linewidth are still about 60% smaller than rigid-ion values, as seen in figures 2 and
3 at k = n/a. The differences between the shell model and rigid-ion model results
become negligible only for very high values of g, about two orders of magnitude
higher than the inter-ionic force constant f.

Let us now consider the temperature dependences at the zone boundary and
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g=inf.

/8)

Figure 2, The ratio Agy /ARy of the total lineshift  Figure 3. The ratio 25y /2Ty of the linewidth
of the shell model to the corresponding lineshift of the shell model to the corresponding linewidth
of the rigid-ion limit versus wavevector k along of the rigid-ion limit versus wavevector k along
the Brillouin zone. We plot the ratio for different  the Brillouin zone. We plot the ratio for different
values of g at T=500 K values of g at T = 500 K

Table 3. Difficrent contributions to the linewidth 2T" for g = 3 f (upper values) and for
the rigid-ion limit ¢ — oo (lower values) at T = 500 K 2I'y and 2I'y are the normal
and Umkiapp contributions to 2I'. 2T is the total linewidth. We give the values of
2I" at different k-poinis of the Britlouin zone.

k 2I'n 2I'y orT
{units of w/a) (THz) (THz) (THz)
0.20 00851 00000 00851
02046 00000 0.2046
0.40 0.1496 00000 01496
06612 00000 0.6612
0.60 0.1128 0.0000 01128
11932 00000 11932
0.80 00756 00001 00757
12714 00018 12732
1.00 0.0354 00354 0.0709

06418 0.6418 1.2836

compare again the rigid-ion behaviour with the shell model behaviour. We observe in
equations (2.12)-(2.14) that the value of g does not affect the behaviour of A and I as
functions of temperature. Therefore the ratios [A(T) — A(0)]gn/[A(T) — A(0)]gs
and [y (T)/Tg,(T), shown in table 4 for different values of g, are independent
of T.

Note that the I'-ratios are significantly smaller than the A-ratios. This implies
that the ratio of the linewidth to the lineshift of the zone boundary phonon is smaller
for the shell model than for the rigid-ion model. The same applics to most k-
values. Therefore, in general, if the anharmonic force constants are adjusted to fit
phonon shifts, the linewidths are expected to have smaller values when the anhar-
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Table 4. Values of the T-independent ratios [A(T) — A(0)]sm /[A(T) — A(0)]r1 and
T'sm(T)/Tri(T) at the zone boundary for several values of the core-shell coupling

constant g.

9 [A(T) - A(0)]sm/[A(T) - A(0)]r1  Tsm(7T)/Tri(T)
f 0.0213 0.0046

3f 01071 0.0552

10f 0379 0.3101

50f 07934 0.7632

— oo 10000 1.0000

monic interactions connect polarizable ions than in the case when they are considered
between effectively rigid ions. The former case is properly treated in our formalism.

4. Discussion

The harmonic shell model has been used since 1960 to describe accurately the phonon
dispersion curves of many compounds at a fixed temperature. In the cases where the
anharmonic effects have also been studied, however, a perturbation theory based on
a development of the crystal potential in higher orders of the nuclear displacements
has been employed. The bare phonon frequencies calculated with the shell model
are used in the expressions in [6] for the lineshifts and linewidths corresponding to
such anharmonic theory. Therefore, although the long-range interactions generated
by the polarization of the electronic shells through the adiabatic condition are taken
into account in the harmonic approximation, they are neglected when incorporating
anharmonicities. These are taken for effectively rigid ions.

In the present work we have shown that a consistent perturbative treatment of the
anharmonic interactions in a shell model [5] leads to substantial qualitative and quan-
titative differences from the former treatment. Firstly, the anharmonic parameters
necessary to explain a given phonon shift and width are larger for the shell model
than for the rigid-ion model. Secondly, the shell model gives a different (generally
smaller) ratio of linewidth to lineshift. Thirdly, both features are k-dependent.

The second fact mentioned above enables us to give a possible interpretation of
the discrepancies found by Cowley [8] in the treatment of the anharmonicities in
silicon. Cowley described the harmonic dispersion curves for silicon using a shell
model. Then he followed the procedure described at the beginning of this section
to calculate the lineshift and linewidth of the optical phonon at the Brillouin zone
centre. He reproduced satisfactorily the phonon lineshift but predicted values much
larger than the experimental data for the phonon linewidth. The origin of these
discrepancies has recently been the subject of speculation [9). Our results show that
they may be ascribed to the neglect of the polarizability effects in the treatment of
anharmonicities. We shall pursue a detailed analysis of this problem in future work.

We are also interested in the tetragonal-to-orthorhombic phase transition that
takes place in La,CuO,. By starting from a shell model fit of the phonon dispersion
curves [10], we shall analyse the soft mode responsible for the structural transition by
using the shell model perturbation theory [5] as described in this work. Moreover, we
shall try to compare the evaluation with that recently carried out in the framework
of a rigid-ion model [11]. It is also interesting to study, with a shell model for
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La,CuO,, the role played by a non-linear oxygen polarizability in the structural
transition mentioned above. This anharmonic behaviour of the oxygen polarizability
was used to explain the phase transition in recent work [12].
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Appendix 1

The non-vanishing matrix elements in (2.2) are

R;,=29 ifi=j A (AL1)
T = —g if i =j (Al1.2)
.. 2 if ] = 1 )

- L=f if 7 =i~ 1, and index permutations

25, fi=j=k=l
= f4 if {==j= k=141, and index permutations

ikl _ Al.4
F f4 if i=j,k=1=1-1,and index permutations ( )
—fs ifi=j=k=1-1,and index permutations
Fiik —fs if j =k =141, and index permutations (ALS)
S O A if i=j+41=k+ 1, and index permutations. )

Appendix 2
In equation (2.13a) we have
HW(k, q) = 2 + cos[(k + q)a] + cos[(k — g)a] — 2cos(ka) — 2cos(ga) (A2.1)
where a is the lattice constant, while in (2.135) we have
H® (k,q,,q,) = {cos(ka) + cos(q,a) + cos(g,a) — cos{(k — q;)a]
~ cosf(k — g5)a] — cos[(q; + qz)cz]}2 + {—sin(ka) + sin(g,a)
+ sin(g,a) + sin{(k — ¢,)a] + sin[(k ~ ¢;)a] — sin[(q, + 2,)a])’
(A22)
and
P (w,wf,wf) = [(ny + ny+ 1)/ (w+w) + widp — (ny + 1y + 1) {w—w] —w3)p
+(ny = ryf(w — Wi + @)p — (ny — ny) {w +w] — w})pl. (A23)
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In (2.14) we have

D(w,yw],wl) ={n, +ny 4+ 1) [6 (w~ wl —wl) — 6(w+ wl + w)]

+(n1-—-n2)[ (w+w1—wg)—6(w-w1+w2)]. (A2.4)

Other important definitions are

v(q) =[(2f + ¢) — 2f cos(ga)] ™! (A2.5)
@%(q) = {[2fsin?(qa/2))/[1 + (2f/g)sin¥(ga/}*  (A26)
= {exp [BR(g)) ~1}7". (A2.T)

In (A2.3) the suffix P denotes principal part, while in (2.13) and (2.14) the A-

function reflects wavevector conservation, modulo a reciprocal lattice vector.

The notation w? means w®(g;), while n; means n,,.
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